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Abstract-Asymptotic and full field finite element solutions are given for a semi-infinite planar
crack in a monolithic ceramic subjected to remote mixed mode loading. The material is assumed to
undergo damage in the form ofelastic degradation as a result ofstable microcracking. Microcracks
are assumed to be preferentially oriented normal to the direction of maximum tension. An outcome
of the analysis is that microcracks shield the crack tip less effectively under mode II than under
mode I conditions. Other issues addressed concern the relation between the mixities of the applied
loads and the near-tip fields, the path-independence of the J integral, the validity of deformation
theories of damage under proportional loading, and the conditions for dominance of the singular
near-tip fields.

1. INTRODUCTION

A growing body of research is presently concerned with the development of a fracture
mechanics ofbrittle solids such as ceramics. These are materials which, while not undergoing
plastic deformations of any significance at low temperatures, can nevertheless behave quite
inelastically as a result of the nucleation, growth and coalescence of microcracks. In certain
classes of ceramics, extensive intergranular microcracking has indeed been observed in the
immediate vicinity of macrocrack tips (Hoagland et al., 1973; Claussen, 1976; Wu et at..
1978).

Despite recent progress in the area, a full understanding of the interplay between
microcracking and fracture is yet to emerge. For instance, there is an apparent discrepancy
between the measured surface energy of grain boundary facets and the overall toughness
of the polycrystalline material. A plausible conjecture which has recently been the subject
of intense investigation is that near-tip microcracking accounts for such a discrepancy. The
supposition is that, by rendering the material more compliant, microcracks in effect shield
the crack tip from the action of the remotely applied loads (Evans, 1984). Thus, interest in
the shielding mechanism stems from its potential for enhancing the fracture toughness of
ceramics. In reality, the presence ofmicrocracks ahead ofthe crack tip degrades the intrinsic
resistance to fracture of the material, an effect which partially or totally offsets the toughness
gains derived from shielding (Ortiz, 1988). It thus appears that the toughness of ceramics
may be the result of a combination of toughening mechanisms operating in conjunction
with shielding, such as crack deflection (Faber and Evans, 1983a, b) and bridging (Swanson
et al., 1987).

Whatever the mechanisms involved, the sing~lar fields which develop in the presence
of damage set the outer boundary conditions for the actual processes of crack growth. In
this sense, there remains a critical need to understand and characterize such singular fields.
Some ofthe studies completed to date have been based on approximate solutions to many
crack problems (Gong and Horii, 1987; Hoagland and Embury, 1980; Kachanov, 1986).
Others have employed models ofdistributed damage (Evans and Fu, 1985; Charalambides,
1986; Charalambides and McMeeking, 1987; Hutchinson, 1987; Ortiz, 1987; Rodin,
1987). In the latter category, Charalambides (1986) and Charalambides and McMeeking
(1987) considered the case of isotropic damage and Ortiz (1987) the case of damage
normal to the maximum tensile direction. Hutchinson (1987) based his analysis on dilute
microcracking approximations.

All of the above studies, however, have been solely concerned with the case of mode I
loading. In this paper, we proceed to investigate the mixed mode case. Asymptotic and full
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field finite element solutions are given for the standard problem of a semi-infinite planar
crack undergoing plane strain deformations. The material is assumed to undergo damage
in the form of elastic degradation as a result of stable microcracking. Microcracks are
assumed to be preferentially oriented normal to the direction of maximum tension.

Some of the issues addressed concern the relation between the mixities and stress
intensity factors of the remote and near-tip fields, the path independence of the J integral,
the validity of deformation theories of damage under proportional loading, and the con
ditions for dominance of the singular near-tip fields. A rather remarkable result is that the
mixities of the remote and near-tip stress fields ostensibly coincide. For the proportional
loading conditions investigated here, the computed stress paths are observed to remain
nearly proportional. Under these conditions, the constitutive response becomes indis
tinguishable from that of a nonlinear elastic solid and the J integral applies with its usual
path-independence properties. This, in conjunction with the observed conservation of
mixities, provides a means for computing the near-tip stress intensity factors directly from
the asymptotic solutions.

An outcome of this analysis is that microcracks shield the crack tip less effectively
under mode II than under mode I conditions, an observation which is in keeping with the
available observational evidence (Shetty et al., 1981; Morrone and Suresh, 1988). This
effect is rooted in the fact that the mixed mode asymptotic fields, derived in Section 3,
exhibit an elastic wedge where the material is free of damage. This leaves the crack tip
partially unshielded from the remote loads.

Finally, we show in Section 4 that the asymptotic fields computed here possess regions
of dominance comparable to those found in plastic solids under small scale yielding
conditions. Thus it is checked that, under suitable conditions which are enumerated in
Section 4, the process zone where the actual separation processes resulting in the advance
of the crack take place is indeed deep inside the region of dominance of the asymptotic
fields. In particular, crack growth may be expected to be driven by the near-tip stress
intensity factors computed in Section 4.

2. DAMAGE MODEL

Stable microcracking in ceramic materials has the beneficial effect of partially relieving
the stress concentrations that arise at the tip of a crack, in effect shielding it from the action
of remote loads. Extensive microcracking of this type has been observed in certain classes
of ceramics (Hoagland et al., 1973; Claussen, 1976; Wu et al., 1978). Microcracks develop
mainly at grain boundary facets as a result of residual stresses generated during cooling
and of applied tensile stresses (Fu, 1983). Once the microcracks are formed they tend to
remain confined to their facets with their tips pinned stably at grain junctures. As the
number of microcrack nucleation sites is exhausted a saturation stage ensues during which
the material sustains no further damage; see Fig. 1a.

The process of microfracture has the additional effect of relieving grain-to-grain
residual stresses which arise during cooling from the fabrication temperature. The mag
nitude and statistical properties of these residual stresses have been computed analytically
by Ortiz and Molinari (1988). At the macroscopic level, the stress relaxation process
manifests itself as the development of permanent strains. Thus, upon removal of the loads,
the strains do not reduce to zero but rather attain a residual value; see Fig. lao Hutchinson
(1987) has pointed out the analogy between these irreversible strains and those arising as
a result of displacive phase transitions.

Transformation strains have been shown to exert a significant toughening effect on
growing cracks; by Budiansky et al. (1983) for transforming second-phase particles, and
by Charalambides (1986) for microcracking. By contrast, a result of Budiansky et al. (1983)
asserts that volumetric transformation strains have no effect on the near-tip stress intensity
factors ofstationary cracks. In addition, transformation strains remain bounded at all levels
of stress, and thus contribute negligibly to the near-tip singular strain fields. Consequently,
for the purpose at hand, i.e. for the computation of asymptotic fields in stationary cracks,
transformation strains may be altogether neglected.
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Fig. 1. (a) Stress-strain behavior of monolithic ceramic. (b) Trilinear idealization.

Throughout the present work, it is presumed that the deformation processes ofinterest
involve the cooperative response of large numbers of distributed microcracks. The solid is
thus idealized as a homogenized continuum undergoing distributed damage. The particular
damage model adopted here conforms to the general framework formulated by Ortiz (1985).

The stresses (1ij and strains 8ij in the solid are assumed to be linearly related according
to

(I)

where the elasticity tensor Cij/c/ is regarded as an internal variable characterizing the current
state of microcracking. In this work, attention is confined to the monotonic loading
processes in which microcrack closure plays no significant role. A general treatment of
microcrack closure as a unilateral constraint has been formulated by Ortiz (1985).

Of primary interest to the applications sought here is the development of damage in
tension. A wealth of observational evidence exists on microcrack formation in ceramics at
elevated temperatures (see Suresh and Brockenbrough, 1989, for a recent review). Under
these conditions, microcracks appear to be mainly intergranular and to form preferentially
normal to the tensile axis. Similar observations have been made by Hayhurst (1972) and
Hayhurst and Leckie (1973) for creep rupture of metals under multiaxial states of stress.
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Hayhurst (1972) conducted biaxial tension creep rupture tests on an aluminum alloy and
observed that in all cases grain boundary cracks had grown on planes which were at an
angle of 90" to the direction of maximum tension. By way of contrast, similar data for
ceramics at low temperatures do not seem to be as yet available in the literature. Microcrack
observations in rocks are mainly confined to compressive states of stress (see, e.g., the
review of Kranz, 1983). It seems reasonable to assume, however, that, as in the high
temperature range, microcracks nucleated at low temperatures in multiaxial tension will
also tend to be preferentially aligned normal to the maximum principal stress. A damage
rule consistent with this assumption is

(2)

where the unit vector n points in the direction ofmaximum tension and J.I may be interpreted
as a scalar measure of cumulative damage. For instance, in uniaxial tension J.I reduces to
l/E-l/Eo, where E is the current secant modulus and Eo is the initial Young's modulus.

Damage rule (2) has been shown by Ortiz and Giannakopoulos (1988) to maximize
the extent of crack-tip shielding. More precisely, of all possible arrangements of a given
microcrack density, maximum shielding is obtained when all microcracks develop normal
to the direction of maximum tension, as required by (2).

The definition of the model is completed by postulating a suitable equation ofevolution
for J.I. To this end, we start by assuming that incremental damage is possible only if the
damage criterion

(3)

is satisfied. Here, 111 is the maximum principal stress. The critical tensile stress I1c is a
function of the state of damage itself, e.g., through the cumulative damage parameter II.

The dependence of I1c on J.I may be determined simply from the uniaxial tension test
(Ortiz, 1988). In this work, we have assumed the trilinear law depicted in Fig. 1b. Thus,
following a linear elastic stage characterized by some initial moduli, Eo and vo, a linear
transition ensures as·the elastic limit 110 is exceeded. This transitional regime continues up
to the saturation stress 11.. at which the material is assumed to attain a saturated modulus
E•. A stress-strain dependence of this nature has been generally adopted in the majority of
the studies on microcrack shielding to date.

Ofparticular interest to subsequent developments is the behavior of the material under
proportional and monotonic stressing. Under these conditions, it may be shown (Ortiz,
1987) that the constitutive response becomes indistinguishable from that of a nonlinear
elastic material and may thus be formulated as a deformation theory of damage. In the
saturation range, the stress-strain law takes the particularly simple form

where C~kl are the initial elastic moduli and

A.. = I/E.-l/Eo.

(4)

(5)

As will become apparent in the asymptotic analysis that follows, a key feature of stress
strain law (4) is that it derives from a complementary energy potential which is homogeneous
of degree two (Ortiz, 1987).

3. ASYMPTOTIC ANALYSIS

Next, we endeavor to characterize the mixed mode crack-tip behavior ofsolids obeying
the constitutive laws formulated in the preceding section. To this end, we consider a
body containing a semi-infinite crack on the negative XI-axis undergoing plane strain
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Fig. 2. Definition of boundary value problem.
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deformations under the action of a remote mixed mode K-field; see Fig. 2. The boundary
conditions appropriate to this problem may be posed as

(6)

where Kf and KIT are the remotely applied mode I and II stress intensity factors, respec
tively, and aJj(O) and a:J(lJ> the corresponding linear elastic angular fields (see, e.g. Rice,
1968). Here and subsequently, (r,O) refer to a system of polar coordinates centered at the
crack tip with 0 measured from the plane of the crack.

A measure of the relative weights of modes I and II in the solution is provided by the
mixity ratio

d 2 -.IK}iP/M =;tan Krr'

With this definition, M d varies from 0 for mode II to 1 for mode I. A similar measure

2 /K
OO IMC=-tan- I ~

11: Ku

(7)

(8)

characterizes the modal composition of the applied stress fields.
Let the remote loads be increased proportionally and monotonically. Then, for the

class ofmaterials considered here, the resulting near-tip fields possess a tripartite structure;
see Fig. 3. In the innermost region, the maximum tensile stress exceeds the saturation stress
and the material is saturated. In the outermost region, the stresses lie below the damage
threshold and the material is intact. Between these two zones, there lies a transition region
where the material is partially damaged.

If the remote loads are increased proportionally, it may be reasonably expected that
all material points about the crack tip undergo near-proportional stressing, a presumption
which is verified below by way of numerical testing. For proportional stressing, the model
outlined in Section 2 reduces to a deformation theory of damage (Ortiz, 1987, 1988). A key
feature of the corresponding complementary energy potential is that it is homogeneous of
degree two in the saturation stage. Under these conditions, a classical argument of Rice
(1968) shows that the asymptotic stress and strain fields must be square-root singular.
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Fig. 3. Elastic, saturated and transition zones in the small scale damage problem for a stationary

crack.

Hence, it is possible to introduce a pair of crack-tip stress intensity factors in the usual
manner,

(9)

The net effect of microcracking is to reduce the magnitudes of (KliP, KIt) with respect
to those of (Kj" , KIT), thus in effect shielding the crack tip from the remotely applied loads.
If the near-tip fields dominate over a distance much larger than the size of the process zone
wherein the actual separation processes take place, then the criteria for crack growth should
be expressible in terms of (KrP, Krr>, which thus become a central object of the analysis.
The issue of dominance is addressed in Section 4.

For the class of materials under consideration, the mode I near-tip fields have been
determined analytically by Ortiz (1987). Remarkably, in this case one finds that the stress
field exhibits angular variations which are identical to those of the linear elastic solution.
Moreover, the amplitude of the singular fields can be computed in closed form by recourse
to the J integral of Rice.

The mixed mode and pure mode II cases, by contrast, appear to have heretofore defied
analytical characterization. Here we seek to make progress by numerical means. Two
different methods of solution are employed. Full field solutions are obtained by means of
the finite element method, as discussed in the next section. In asymptotic studies, however,
it proves advantageous to exploit the separability of the solution to reduce the problem to
a single odinary differential equation for the angular fields. We solve this ODE by means
of the finite element method outlined in the Appendix.

Figure 4 shows the angular distributions of the near-tip singular stress fields for
various mixities. The results correspond to a choice ofmaterial parameters E./Eo =0.6 and
Vo = 0.25. All stress components are seen to be everywhere continuous. The symmetry of
the mode I fields, Fig. 4a, is lost as soon as a mode II component is introduced in the
solution, Figs 4b-4e. By and large, the stress fields obtained in the presence of damage are
quite similar, although not identical, to the corresponding elastic fields of the same mixity.

A noteworthy feature of the computed stress fields is the presence of an elastic wedge,
Le. of a sector (x-if) :Eo; 8 :Eo; x in which at :Eo; O. For mode II, the angle if is plotted in Fig.
5 as a function ofthe extent ofdamage. As may be seen, if decreases steadily from a limiting
value of roughly 110° corresponding to the linear elastic case.

It is interesting to note that the presence of a sector devoid of damage leaves the crack
tip partially unscreened. Under these conditions, the net amount of shielding experienced
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by the crack tip may be expected to decrease with the extent of mode II in the solution.
Figure 6 compares the shielding ratios obtained for modes I and II as a function of the
extent of damage. The relation between the remote and near-tip stress intensity factors
follows from the assumed path independence of the J integral of Rice. The presumption of
path independence is, as noted above, contingent upon the near-proportionality ofthe stress
trajectories at all material points. That this is indeed so is confirmed below with the aid of
full field finite element solutions. As expected, the shielding ratio for mode II is consistently
lower than that for mode I; see Fig. 6. This observation is in keeping with the experimental
data available to date (Shetty et of., 1981; Morrone and Suresh, 1988).
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Fig. 4. Near-tip stress fields.
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Fig. 4-Continued.

As in the mode I case (Ortiz, 1987), the asymptotic strain fields possess a richer
structure than the corresponding stress fields. A salient feature of the strains is the presence
of discontinuities or jumps. It follows from Maxwell's compatibility conditions (see, e.g.,
Gurtin, 1984) that the only admissible jumps are [888] and [8r8]. Noting that the stresses
are continuous, one finds from constitutive relations (4) that

[888] = A.sG'l[n8n8]

[8r8] = A.sG'1 [nrn8]. (10)

110.0

105.0 ~u;
I±l 100.0
a:
C'w
Q 95.0
•Cl:l

90.0
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1.0 2.0 3.0 4.0

EolEs
Fig. 5. Amplitude of the elastic sector.
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Fig. 6. Shielding ratios for modes I and II.

Let tX denote the angle subtended by the direction ofmaximum tension n and the radial
direction. Thus,

1 Ure
tX = 2 tan- I _-.:...:.-

0',,-0'00
(II)

and (n" ne) = (cos tX, sin tX).

By virtue of(II), it follows that strain jumps are possible only if (X itselfis discontinuous.
By inspection of (II) it becomes apparent that tX jumps from -7t/4 to 7t/4 as 0',,- 0'00 goes
through zero. Moreover, these are the only possible discontinuities of tX when the stresses
are continuous.

Let tX± = ± 7t/4. Then, it follows from (10) that

In particular,

ele = )..ud2

e~ = ±)..u.l2.

[eee] =0

[ere] = )..0' •.

(12)

(13)

All strain jumps in the computed solutions are indeed found to conform to these
conditions, i.e. only jumps in ere are observed, the jumps occur at points where 0'" = 0'96,
and the amplitudes of the jumps obey (13). From a physical standpoint, the angle 11. may
be viewed as defining the preferred orientation of the microcracks relative to the radial
direction. Thus, a jump in 11. may be interpreted as an indication that two families of
microcracks coexist at the point of discontinuity.

4. FULL FIELD FINITE ELEMENT SOLUTIONS

In this section, we present finite element solutions to the problem of a semi-infinite
crack under the action ofa remote mixed mode K-field. Full field solutions furnish valuable
information on features of the singular fields which are not revealed by an asymptotic
analysis, such as the zone of dominance of the asymptotic solution and the precise nature
of the transition fields. We also seek to verify assumptions that were made as part of the
asymptotic treatment of the problem, such as the proportionality of stress paths at all
material points in the solid.
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Fig. 7. Finite element mesh employed in full field analysis.

Throughout the calculations, the domain of the analysis was discretized into a fan-like
finite element mesh with increasing resolution towards the tip; see Fig. 7. The elements
employed were nine-noded isoparametric quadrilaterals. The mesh resolved the domain
-1t ~ () ~ 1t into 48 equal sectors. In mode I, the symmetries inherent to the problem permit
restricting the analysis to the upper half plane. The material parameters adopted were
Vo = 0.25, uo/Eo= 9.1 x 10- ~ and us/uo = 1.2; see Fig. 1b. The applied loads were increased
proportionally and monotonically up to a value resulting in damage over roughly one-third
of the mesh. The discretized field equations were integrated by means of a forward-Euler
scheme.

Figure 8 shows a comparison of mode I angular stress fields at the point of maximum
load. Shown are the exact analytical solution, which in this case coincides with the linear
elastic fields, and the results of the finite element computations on the second ring of
elements. The comparison thus exhibits the level of accuracy of the computed stresses.

Figure 9 shows the saturated and damaged zones at maximum load for various mixities.
For mode I, Fig. 9a, the expected symmetric configurations are obtained. The sizes '. and
'd of both zones, measured along the plane of the crack, correlate quite closely with the
estimates

(14)

As the mode II component is increased, the saturated and damage zones experience an

-FE
--- ASYMPTOTIC

Eo/E.=2
11=0.25

o 90 180
ee

Fig. 8. Comparison of computed and exact asymptotic stress fields.
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overall rotation; Figs 9b-9d. As noted in connection with the asymptotic solutions, this
leaves a sector of material (1t-tr) ~ (J ~ 1t unshielded, the size of which increases with the
extent of mode II in the remote loads. For mode I, the radius 'd«(J) of the damaged zone
steadily increases as (J goes from 1t-tr, where 0'1 and'd vanish, to -1[, where 0'1 and'd
attain their maximum values.

Figure 10 shows the relation between the mixities of the remote and near-tip stress
fields. Remarkably, one has

(15)

to within the accuracy of the analysis. Figure II, on the other hand, depicts the value of
the J integral of Rice computed from circular contours of varying radii. The results were
obtained using the domain-J method of Shih et a/. (1986). It is seen that, for the family of
integration contours under consideration, the J integral is ostensibly path independent.

Under these conditions, it is possible to determine the relation between the remote and
near-tip stress intensity factors from the sole knowledge of the asymptotic singular fields.
By computing Jbased on a contour far into the elastic zone, one obtains the familiar result

MODEl
Es/Eo=O.:S

(a)

MIXED MOOE UYlCna2)
E./Eoa o.6

(b)

MIXED MODE UY')ral)

Es/Eo=O.6

(c)

fig. 9. Saturated and damaged regions.
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Fig. 9-Continued.

(16)

Using a contour shrunk to the crack tip one obtains

(17)

where f is a homogeneous function of degree two which can be determined directly from
the asymptotic solution. By the path independence of J, one has

1.00,..--------------'"

"2 0.:50

0.00 "-__--'" ....L- ""--__--'

QO QS I~

Me

Fig. 10. Relation between mixities of near-tip and remote stress fields.
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Fig. II. Variation of J integral computed along concentric circular paths.

(18)

On the other hand, (15) implies the relation

Klip K'f'
KIT = KIt" (19)

Equations (18) and (19), together with (16) and (17), suffice to uniquely determine Klip
and K!/f as a function of K'f' and KIT. For instance, for pure mode II loading, eqns (18)
and (19) reduce to the single relation

(20)

where, from the asymptotic solution, the coefficient fJ is numerically determined to take the
value 0.82. From (20) one obtains the dependence of the mode II shielding ratio KIT/K/l
on Eo/E. depicted in Fig. 6.

A question closely related to the path invariance ofJ concerns the near-proportionality
of the stress paths at material points within the body. Near-proportionality was also an
underlying assumption throughout the asymptotic analysis of Section 2, which was based
on a deformation theory ofdamage. The question thus arises ofhow closely these conditions
are realized in the field solution. Shown in Fig. 12a are the stress paths undergone by a
quadrature point adjacent to the crack plane on the second ring of elements. The results
correspond to pure mode I loading. As may be seen, the paths remain ostensibly pro
portional to within the accuracy of the analysis. A similar situation is encountered in the
mixed mode and mode II cases. Figure 12b depicts the stress paths computed at an angle
(J = 120° to the plane of the crack for pure mode II. As in the case of mode I loading,
conditions of near-proportionality are closely realized. These observations lend a posteriori
justification to the use of a deformation theory of damage and to the presumption of path
independence of the J integral.

A final issue of critical importance concerns the range of dominance of the computed
asymptotic fields. For an asymptotic solution to be ofrelevance to the fracture behavior of
a solid, it must dominate over a distance to the crack tip well in excess of the region where
the actual micromechanical processes of separation take place (see, e.g., Hutchinson, 1983,
for a detailed discussion). This requirement is not always satisfied. In fact, asymptotic
solutions are known which possess a vanishing region of dominance. Under conditions of
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Fig. 12. Stress paths at selected points in the vicinity of the crack tip.

dominance, however, the process zone is driven by the surrounding singular fields, and the
critical conditions for crack growth are expressible in terms of K'tP and K'tl'.

The question ofdominance is assessed here by a direct comparison of the finite element
and asymptotic solutions. Figure 13 shows the ratio of the full field to the asymptotic (181/

field on a radius adjacent to the plane of the crack. The results correspond to pure mode I
loading and are shown for remote loads which result in a damage zone extending to roughly
one-third of the total mesh. As may be seen, the singular field dominates out to a distance
ahead of the tip of

(21)

This situation parallels that encountered in metals. Similar observations apply to the mixed
mode case.
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Fig. 13. Comparison between asymptotic and full field solutions.

In monolithic ceramics, macrocracks grow primarily by coalescence with the micro
cracks in the immediate vicinity of the crack tip. Thus, the size of the process zone is
determined by the distance between the tip and the leading microcrack, and, hence, by the
spacing I between the microcracks. An analysis of Ortiz (1988) based on a cohesive zone
model lends additional support to this scenario. Thus, the condition for dominance becomes

R»l. (22)

Inserting estimates (21) and (22) into this condition, one obtains restrictions on the
geometry of the cracked body and on the magnitude of the applied loads. Compliance with
these restrictions insures dominance of the singular fields. It is noteworthy that (22) is also
a requirement for the analysis given here to apply, namely, that the zone of damage be
large compared to the mean spacing of the microcracks. Both the conditions for dominance
and the applicability of the method of analysis may break down, for instance, for short
cracks. In this case, the surrounding microcracks cannot be idealized as a homogeneized
continuum, and the discrete nature of the interactions needs to be taken into account. In
particular, the singular fields computed with the aid of models of distributed damage
become physically meaningless.
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Short cracks arise in ceramics during the first stages of microcrack coalescence, the
mechanism responsible for the ultimate failure of the material. Following the inception of
coalescence, the short-range interactions between a small number of critical microcracks
become all-important and models of distributed damage no longer apply. On the other
hand, as discussed above, the small-scale damage concepts of fracture mechanics are equally
inapplicable until the critical flaw becomes sufficiently large to possess dominant near-tip
singular fields. Thus, incipient microcrack coalescence arises as a purely micromechanical
phenomenon not amenable to treatment within the confines of either classical constitutive
theory or small-scale damage fracture mechanics.

Under conditions of dominance, the conditions at the crack tip are fully determined
by the asymptotic singular fields, which may be thought of as driving the growth of the
crack. Thus, for instance, crack growth may then be reasonably assumed to occur when
KliP, in mode I, or a suitable combination of KI;P and Klir, under mixed mode conditions,
attain a critical value characteristic of the toughness of the material. It bears emphasis that
the validity of postulates of this type is critically dependent on the dominance of the
asymptotic fields used to characterize the conditions prevailing at the crack tip, and hence
the need for establishing such dominance.

5. SUMMARY AND CONCLUSIONS

Asymptotic and full field solutions have been obtained for a semi-infinite crack in a
monolithic ceramic under mixed mode I-mode II loading. Mixed loading had not heretofore
been considered in the literature on the subject, which has been primarily concerned with
the mode I case. The mixed mode asymptotic fields have been herein computed by means
of a new finite element method described in the Appendix. The principal advantage of the
present approach over traditional finite differences or shooting methods is that the consti
tutive relations enter the formulation undifferentiated. In this fashion, the numerical cal
culations are greatly simplified. The method has exhibited remarkably good accuracy for
relatively coarse meshes.

A salient feature of the mixed asymptotic solutions obtained here which does not arise
under mode I loading is the presence of an elastic wedge of material free of microcracking.
A consequence of this elastic wedge is that the crack tip is less shielded by damage under
mixed mode conditions than in pure mode I. This effect is also revealed by the computed
shielding ratios, or ratio between the remotely applied and near-tip stress intensity factors.
Thus, the shielding ratio in mode I is about 10% lower than that which is computed for
mode II. These observations are in keeping with the available experimental data (Shetty et
al., 1981; Morrone and Suresh, 1988). As in the mode I case (Ortiz, 1987), the singular
strain fields exhibit discontinuities. The character and magnitude of the jumps have been
determined analytically.

A number of assumptions pervade past work on the subject which require careful
justification. For instance, the relation between near-tip and remote stress intensity factors
has been frequently determined using the invariance of the J integral (see, e.g., Chara
lambides and McMeeking, 1987; Hutchinson, 1987; Ortiz, 1987). This, however, presumes
that the constitutive response at all points within the solid is indistinguishable from that of
a nonlinear elastic material. This assumption is justified only if the stress paths remain
nearly proportional at all times. To elucidate this issue, a full field solution, rather than an
asymptotic solution, is needed. We have computed full field solutions using conventional
finite elements for mixities ranging from mode I to mode II conditions. Our results show
that, for the full range of mixities, proportional stressing is indeed closely realized.

Another feature of the solution which is revealed by the full field analysis is the fact
that the mixity of the near-tip singular fields ostensibly coincides with the mixity of the
remotely applied K-fields. This result, in conjunction with the invariance of the J integral,
suffices to relate the magnitude of the remote and near-tip stress intensity factors over the
full range of mixities.

Finally, we have addressed the issue of dominance of the asymptotic singular fields.
In essence, asymptotic solutions are useful in characterizing crack growth only if they
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dominate over distances much larger than the size of the process zone. This is the region
close to the crack tip where the processes of separation resulting in the growth of the crack,
in this case coalescence with the neighboring microcracks, take place. For the materials
considered here, the size of the process zone is a small multiple of the distance between
microcracks (Ortiz, 1987), which is itself commensurate with the grain size. The range of
dominance of an asymptotic field may be assessed by comparison to the full field solution.
For the mode I case, we have determined that the singular fields obtained here dominate
out to distances ahead of the tip of the order of 1/5-1/4 of the damaged region. These
bounds are of the same order as those pertaining to the HRR singularity of small scale
yielding fracture mechanics (see, e.g., Hutchinson, 1983).

The dominance requirement sets restrictions on the geometry of the body and on the
magnitude of the loads for crack growth to be driven by the asymptotic singular fields. In
particular, when these restrictions are met, the critical conditions for crack growth are
expressible in terms of the near-tip stress intensity factors. It should be emphasized that
dominance is not an assured property of all asymptotic fields. In fact, asymptotic solutions
have been obtained in fracture mechanics which have been shown to possess a vanishing
range of dominance. In the case of ceramic materials, our results indicate that lack of
dominance is a characteristic of short cracks. The analysis of short cracks is central to the
understanding of the early stages of coalescence. In this case, the discrete interactions
between the crack and the surrounding microcracks play an important role, and models of
distributed damage are no longer appropriate.
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APPENDIX: A FINITE ELEMENT METHOD OF ASYMPTOTIC ANALYSIS

The angular components ofasymptotic singular fields in fracture mechanics have been traditionally computed
by means of finite difference (Amazigo and Hutchinson, 1977) or shooting methods (Shih, 1973). Both techniques
deal directly with the governing fourth-order ODE. Since the formulation of the governing equation requires
differentiating the constitutive relations twice, the analysis may become exceedingly cumbersome for complex
material models. The finite element method, by contrast, is based on a weak integral statement of the governing
ODE, wherein the constitutive relations enter undifferentiated. By virtue of this restatement of the problem, the
numerical calculations are greatly simplified. In this Appendix, the finite element method adopted in the com·
putation of the asymptotic fields presented in Section 3 is described in summary form. A more detailed exposition
of the method may be found in the article of Symington et al. (1989).

The point of departure for the method is the equation of compatibility

(AI)

for separable strain fields of the form

(A2)

Equation (AI) is obtained simply by inserting (A2) into the two-dimensional equation of compatibility in polar
coordinates.

The method diverges from shooting and finite difference schemes in that (A I) is recast in weak form, in the
spirit of finite elements. To obtain the weak form of (AI), multiply through by an arbitrary weighting function"
satisfying the homogeneous essential boundary conditions

,,( -x) = ,,(x) = 0, ,,'(-x) = ,,'(x) =0,

integrate over the range [-x, xl and integrate by parts twice, to arrive at the integral statement

(A3)

(A4)

This equation may be rephrased in a more compact form by introducing the following strain vector i and
operator L

(A5)

whereupon (A4) becomes

(A6)

Next, assume that the stress potential ,p is separable, Le. it is of the form
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tP oc: r H f(8).

Then the stresses are themselves separable and may be written as

where the angular distributions are given by

1
l1j 1r+(2-

p)f}
is 1100 = (2-P)(I-P)f aRf

11 -(l-P)f'
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(A7)

(AS)

(A9)

Finally, assume that the constitutive equations are homogeneous of some degree. Then, a relation of the type

i= i(l1) (A 10)

between the angular components of stress and strain follows. Inserting (A9) and (A 10) into (A6), one finds

(All)

This integral statement may now be taken as a basis for formulating finite element approximations. To this
end, the domain [-It, It] is partitioned into a collection of two-noded elements. Since the weak form (A6) involves
derivatives of second order in the unknown function, piecewise continuously differentiable interpolation must be
used to obtain convergent approximations. In one-dimensional problems such as the one under consideration
here, this may be accomplished simply through the use of Hermitian interpolation. The unknowns of the problem
thus become the nodal values of the stress potential f. and its derivatives f~, where a ranges over all nodes in the
finite element mesh. Using standard techniques (see, e.g., Zienkiewicz, 1977) the discretized problem may be
reduced to the solution of a homogeneous system of nonlinear equations

F(u) =0 (AI2)

where. signifies the array of nodal degrees of freedom {f.,f~}. This may be solved with the aid of standard
nonlinear solution procedures such as Newton-Raphson's method.

The collection ofall solutions of (A12) may be parametrized by means of the amplitude of the potential f(8)
at some node and the location of its point of zero crossing. These subsidiary constraints may be enforced as
additional boundary conditions. By moving the location of the zero offone obtains solutions of varying mixities.
For instanc:e, pure mode II is obtained by taking the zero crossing to be at 8 =0, whereas pure mode I follows
from the choice 8 - It.


